skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Diamanti, Maria"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the field of autonomous transportation systems, the integration of Unmanned Aerial Vehicles (UAVs) in emergency response scenarios is important for enhancing the operational efficiency and the victims’ positioning. This article presents a novel Positioning, Navigation, and Timing (PNT) framework, namedHEROES, which leverages the UAV and integrated sensing and communication technologies to address the challenges in post-disaster environments. Our approach focuses on a comprehensive post-disaster scenario involving multiple victims, first responders, UAVs, and an emergency control center. HEROES enables UAVs to function as anchor nodes and facilitate the precise positioning of the victims while simultaneously collecting critical data from the disaster area. We further introduce a reinforcement learning model based on the Optimistic Q-learning with Upper Confidence Bound algorithm, enabling the victims and first responders to autonomously select the most advantageous UAV connections based on their channel gain, shadowing probability, and positional characteristics. Furthermore, HEROES is based on a satisfaction game-theoretic model to enhance the sensing, communication, and positioning functionalities. Our analysis reveals the existence of various satisfaction equilibria, including minimum efficient satisfaction equilibrium, ensuring that the UAVs meet their quality of service constraints at minimal operational costs. Extensive experimental results validate the scalability and performance of HEROES, demonstrating significant improvements over existing state-of-the-art methods in delivering PNT services during humanitarian emergencies. 
    more » « less
    Free, publicly-accessible full text available December 31, 2026